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The Fourier transforms are given for a continuous coiled-coil, and for a set of atoms spaced a~ 
regular intervals along a coiled-coil. The nature of the solution is briefly discussed. 

Introduction 

I t  has recently been suggested simultaneously by 
Pauling & Corey (1953) and by Crick (1952) that  the 
structure of s-keratin may be based on a coiled-coil, 
i.e. on a helix with a small repeat whose axis has been 
slightly deformed so that  it follows a larger more 
gradual helix. The small helix proposed is the s-helix 
of Pauling, Corey & Branson (1951). 

I t  is therefore of interest to calculate the Fourier 
transform (or continuous structure factor) of structures 
of this sort. Those considered here are the continuous 
coiled-coil and the discontinuous coiled-coil. The for- 
mer is an infinitely thin 'wire' of electron density, 
and the latter is a set of scattering points (atoms) 
placed at regular intervals on a coiled-coil locus. I t  
will be shown that the two results are very closely 
related. 

To obtain the structure factors for a structure of 
this type made up of real atoms, one follows a similar 
procedure to that  described by Cochran, Crick & 
Vand (1952) in calculating the transform of the simple 
s-helix, i.e. one considers the atoms as being in sets, 
each set consisting of one atom from each residue. 
Thus all the nitrogen atoms of the polypeptide back- 
bone will be in one set, all the oxygen atoms of the 
backbone in another, and so on. One then uses the 
formula derived in this paper to calculate the con- 
tribution of each set separately, allowance being made 
for the finite size of the atom by multiplying the result 
for a set of points by the appropriate atomic scattering 
factor in the usual way. The results are then added 
together, with proper allowance for phase, to give the 
structure factor for the complete structure. 

The advantage of a general solution of the type given 
here is that  instead of calculating the contribution 
of each atom separately one can group them into sets, 
in this case with a large number in each, and calculate 
the whole contribution of a set at one go. 

We shall call the small helix the minor helix and the 
larger helix followed by its axis the major helix. 

Mathemat ica l  method  

A general description is given first, and the particular 
case of the coiled-coil is then derived afterwards. 

Consider first the problem of a continuous infinitely 
thin 'wire' of electron density. Let us suppose that  it is 
defined parametrically in terms of a parameter, t, 
which may be proportional to the length along the wire, 
though this is not essential. We also assume that  the 
structure repeats exactly after a distance c in the 
z direction. 

We can form the expression for the value of the 
Fourier transform of such a wire at some particular 
point in reciprocal space. We will call this C(R, y~, Z), 
where R, yJ and Z are the cylindrical co-ordinates of 
the point in reciprocal space under consideration. 

Now it will often happen that  the expression for the 
transform at this point will be an integral of the form 

I:f~(t)f~(t)fa(t)dt ¢(R, % Z) = 

where t o is the value of t after which the structure 
repeats, and fl(t), f2(t) and f3(t) are simple functions 
of t. They may also be functions of R, ~ and Z, but 
for the moment we are considering these as fixed. 
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We c a n  evaluate  ~his integral  by  Fourier  methods.  
To do this  we consider the Fourier  t ransform of these 
functions, considered as funct ions of t, i.e. we define 

2'(T) -- t0 (t) exp ( 2 ~ i t T ) d t ,  (1) 

where T is the co-ordinate in reciprocal parametr ic  
space. I~ f( t)  repeats itself exact ly  m t imes in  the  
interval  t o then  we need only  consider T at  integer 
mult iples of m/t  o . 

We can now obta in  the  integral  we require b y  the  
repeated use of Parseval ' s  theorem. 

The pth  component  of the  t ransform of the product  
f l(t)  .f2(t)--its value at pT0-- is  given by  

~, F1 ( n T o ) F ~ ( p - n .  To) ,  
n 

where T O -- 1/t o and the sum is t aken  over all  integer 
values of n. 

We also have  the relat ion 

A(t//~.(t)at = to 2 :  F~ (nT0)F~ . ( -nTo / .  
0 n 

By repeated applicat ion of these results we arrive at  

Sto°fl(t)f2(t)f 3(t)dt 

= t o . I  Z F l (qTo)F~(p- 'q .  T o ) F a ( - p T o )  • 
p q 

This can be wri t ten in the  a l ternat ive  more symmetr i -  
cal form 

to ~, ~ .~, F1 (pTo)F2(qTo) Fa (sTo) , 
p q s 

subject  to the  restrict ion tha t  we only consider terms 
for which 

p + q + s  = O. 

If we now use the fact  t ha t  f l( t)  repeats  m 1 t imes in 
to, f~(t) m9 t imes, etc. we obta in  

C(R,  ~, Z) 

= .~.~,  .~, .Fl(mlpTo)F2(m~qTo)Fa(m3sTo) , (2) 
p q s 

with the  restrict ion 

m l p + m ~ q ÷ m a s  = O. (3) 

The summat ions  go over all  integer values of p, q 
and s, both positive and negative,  satisfied by  equa- 

t{on (3). 
If  instead of a continuous wire we have  a set of 

points located at regular in tervals  along the pa th  of 
the wire, one point  being at  t = 0, we obtain, instead 
of an integral,  a sum of t h e  form 

M--1 

.~, f l(ntr)f  2(nt')f  3(nt') . 
n=O 

We have assumed tha t  each point  occurs after an  
in terval  t', and tha t  there are M points in the  in terval  
to, so tha t  Mr'  = t o. 

The discontinuous funct ion can be .obtained from 
the continuous one by  mul t ip ly ing  it  b y  the  appro- 
priate  delta function. The t ransform is obtained from 
the corresponding folding process in reciprocal para-  
metr ic  space. The solution then  follows very  s imilar  
lines to those a l ready outlined. 

I t  turns  out tha t  one arrives at the  same equat ion 
for the Fourier  t ransform as before, namely  equat ion 
(2), bu t  t ha t  the restriction now takes the form 

m l p + m 2 q + m a s  = m ' M  , (4) 

where m'  can take any  integer value, positive or 
negative. Thus the continuous case m a y  be considered 
as a special case of the discontinuous case, obtainable  
by  put t ing  m'  = 0. 

The very  symmetr ica l  form of our answer shows 
tha t  we are not  restricted to three funct ions;  we can 
easily add fur ther  functions, and the  new answer can 
be wri t ten down from inspection. Thus we have  a 
very  general solution for any  structure which can be 
expressed in parametr ic  form. For a non-uniform wire 
we can always include an expression proport ional  to 
the weight of the wire at  tha t  point. 

P a r a m e t r i c  e q u a t i o n  of a continuous coiled-coil  

Let  the major  hehx-- i .e ,  the  one with the  larger 
r epea t - -be  a r ight-handed helix defined b y  

--~ r 0 c o s  (D O r ,  l 

y = r  0 s i n w  0 t ,  / (5) 
z = P(eoot/2~),  

where o~ 0 is positive. 
This is a helix of radius r 0 and a repeat  distance of 

P in the  z direction. The pi tch angle, a, is given by  
t an  c~ = 2~ro/P. 

Now imagine a new set of orthogonal axes x', y', z' 
defined for a given value of t as follows: 

(a) The origin of the new frame is at  the  point  
(a, b, c) in the old frame, and satisfies equa- 
t ion (5). 

(b) The z' axis is tangent ia l  to the  major  helix. 
(c) The x' axis lies in a plane perpendicular  to the  

z axis. 

Thus as t varies these new axes follow the  major  helix, 
the x' axis always point ing direct ly away from the  
fibre axis, z. Consider a point  (x', y',  z') in the  new 
frame, W h a t  are it~ ¢o-ordinate~ in the o ld  frame~, 

We obta in  
x - a  = x' cos a~ot-y'  cos ~. sin w o t - z  ' sin ~. sin w0t, 

y - b  = x'  sin a~ot+y' cos to.cos o~ot+z' sin oc.eos mot, 

z - c  = - y '  sin ~ +z '  cos c~. 

Let  us now make the point  in  the  new f l ame  rotate 
rapidly  with t to trace out the minor  helix, so tha t  

X '  = r 1 c o s  O g l t ,  

y' = r 1 s i n  o91$ , 
z r ~ 0 .  
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I f  m 1 is positive the  minor  helix is r ight-handed.  I f  
negative,  lef t-handed.  

Thus we finally get for the  equat ion of a coiled-coil 
in the  original f rame 

x---- -  

r 0 cos mot+r 1 cos mot. cos m~t--rt cos a .  sin mot. sin m~t, 
y =  

r 0 sin mot+ h sin mot.Cos m i t + r  ~ cos ~ .cos  m0t.sin ml t ,  

z = P(mot /2z  ) -  r 1 sin a .  sin mi t . 

P u t  
r l + A  = rl, r l - A  = rt cos o¢, 

so t h a t  
r l  = r . ( l + c o s  c¢)/2, A = r l ( 1 - c o s  a ) / 2 ,  

and we easily obtain 

x = r o cos mot+71 cos [(mo+m~)t]+A cos [(mo-m~)t] ,  

y = r 0 sin mot+~ ~ sin [(m0+m~)t]+A sin [ (m0-ml) t ] ,  

z = P(mot/27e)-r  1 sin o~. sin m~t. 

We now neglect A, since for cases we are likely to 
consider it  is ve ry  small. The theory  can easily be 
extended to include it, and  this has  been done in the  
full result  given later  in equat ion (13). 

We shall now assume t h a t  while the  major  helix 
makes  exact ly  N O turns  in the  repeat  distance c, the  
minor  helix makes  exact ly  N~ turns  in  its own co- 
ordinate frame.  We shall also restr ict  ourselves to the  
ease of a lef t -handed minor  helix and a r ight -handed 
major  helix, so t h a t  - m l / m o  = N~/No. Thus our para-  
metr ic  equat ion for the  coiled-coil becomes 

x = r 0 cos mot+~ ~ cos [(N~/No-1)mot  ] , ] 

y = r 0 sin m0t-7~ sin [ ( N x / N ° - l ) m ° t ] '  i (6) 
z = P(~oot/2~r ) +r~ sin ~ sin [(N~/No)mot ] . 

The s t ructure  repeats  af ter  a distance N o P in the Z 
direction. We have  c = NoP. 

T h e  t r a n s f o r m  of the c o n t i n u o u s  co i l ed-co i l  

We write, as usual, for the  t r ans fo rm at  the  point  
(X, Y, Z) in reciprocal space:  

f C(X, Y, Z) = exp ( 2 ~ i [ x X + y Y + z Z ] ) d t ,  (7) 
0 

since we need only integrate  over the  wire because the  
electron densi ty elsewhere is zero. We now subst i tu te  
from (6) into (7), and pu t t ing  

R2 = X 2 + y2 ,  tan ~p -- Y / X ,  

we easily obta in  

C(R,  vJ, Z) -- l ~ e x p  2~i  (Rro cos (mot-v2) 

+R~ 1 cos [(N1/No-1)wot+vd] 

+ Z r  1 sin ~ cos [ ( N 1 /N o ) mo t - g /2 ]+Z P( mo t /2 ~ ) )d t .  (8) 

Notice t h a t  since the  s t ruc ture  repeats  af ter  a distance 
c in the  Z direction, the  t r ans fo rm will be non-zero 
only when Z = 1/c, where 1 is an integer. 

Equa t ion  (8) is in the  general  form we have  discussed 
earlier, namely  

f ~ f  x ( t) f  2(t)f 3(t) C(R,  % Z) = f4(t)dt , 

where we define 

f l ( t )  - exp [27dRr o cos (w0t-~?)] , 

f2(t) --- exp [27dR-f 1 cos ((N1/N 0-1)co0t + V)] ,  

f3(t) =- exp [27riZrl sin ~ . c o s  ( ( N 1 / N o ) m o t - 7 ~ / 2 } ]  , 

f4(t) =- exp [27dZP(mot/27r)] . 

We obtain  the  corresponding t r ans fo rm of the  first  
three of these by  using the  ident i ty  

f 2~exp (iw cos 0) exp (inO)dO = 2~inJn(w) (9) 
o 

for integral  n, where Jn(w)  is the Bessel function of 
order n. 

I f  f ( t )  can be wri t ten  in the  form 

f ( t )  = exp [iw cos ( a t + f l ) ] ,  

and if it repeats  m t imes in the  interval  to, then  from 
(1) and  (9) we eventual ly  obtain 

F(n .m/ to)  = Jn(w) exp  ( - in f l+ in7~ /2 )  , 

where n is an integer.  Note  t h a t  at o = 2~m. 
This case covers f l ,  f2 and f3- To obtain  F4(T ) we 

write  

1 f t° F4(T) = ~o o exp (2~riZP(°~°t/2~r)) exp (2~i tT)d t .  

This is zero except  when the  t~vo exponentials  cancel, 
i.e. when ZP(mo/27r) = - T .  Now NoP = c, the repeat  
distance of the  s t ructure .  I f  we write  Z = 1/c (so t h a t  
1 is the number  of the  layer-line),  we obtain 

F4(T) = 1 when T = - l / t  o . 

Applying these results, and using the  general  for- 
mula  of equat ions (2) and (3), we finally obta in  

C(R,vd,1/c)=.,~,.~,.~,Jp(27eRro)Jq(2~R-r,)Js(27~(1/c)r ~ s ins)  
p q s 

× e x p i [ p ( ~ / 2 + ~ f ) + q ( : ~ / 2 - v 2 ) + s ~ ] ,  (10) 

the  sums to be t aken  over all integer values for which 

Nop + ( N~ - No)q + N t s  = 1. ( l l )  

This has been normal ized to make  F00 o uni ty.  The 
solution is of course only non-zero on a set of planes 
corresponding to integer values of l, since the s t ruc ture  
is periodic in the  z direction but  non-periodic in the  
other  directions. 

T h e  d i s c o n t i n u o u s  co i l ed-co i l  

This is the  case of a set of points placed a t  regular  
intervals  on a coiled-coil, the  scat ter ing being due to 
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the points Mone. We assume that  one atom is at the 
point defined by t = 0, and that  there are M atoms, 
spaced at regular intervals of t, in the complete repeat 
distance, c. 

As already explained, the formula is identical with 
(10), except that  instead of (11) we now have the 
restriction 

N o p + ( N x - N o ) q + N ~ s  = l + M m ' ,  (12) 

where m' can take any integer value. The continuous 
case is thus the discontinuous case with m' restricted 
to zero. 

The above results apply to a right-handed major 
helix and a left-handed minor helix. The result for 
both helices being right-handed can be obtained simply 
by giving N1 a negative value. The identity 

J_n(w) = Jn(w) exp (inre) 

is useful in recasting the formula. 
The formula quoted assumes a rather special 

choice of the phase of both the major and minor 
helices. The goneral solution given at the end of this 
paper d i f f~s  only in the exponential phase term, 
apart ~om the fact that  we have assumed here that  
A is negligible. 

The nature of the solution 

The solution looks more complicated than it is. This 
is because, as explained in the case of the simple helix 
(Cochran, Crick & Vand, 1952), it is a property of Bes- 
sel functions that  Jn(x) is vanishingly small for small x 
if n is large. Thus for the central regions of reciprocal 
space, where R is not too big, and for structures of a 
limited size, so that  r is also limited, (2gRr) is often 
fairly small. Thus Jn(2r~Rr) vanishes for high values 
of n, and we usually only have to consider the low- 
order Bessel functions. 

The solution, then, says that  the structure factor 
at the point in reciprocal space under consideration 
is given by the sum of an infinite numbers of terms, 
each of which is the product of three Bessel functions, 
multiplied by a phase factor. However, if one of the 
Bessel functions in any of the triple products is 
vanishingly small, that  product also vanishes, so that  
the great majority of the triple products are effectively 
zero, and one usually only has to consider a very small 
number of them. 

The solutions quoted are for a single continuous 
coiled-coil, or a single discontinuous set of atoms on a 
coiled-coil. As explained in the introduction, to obtain 
the structure factor for a number of sets of atoms one 
must calculate the structure factor for each set, and 
then add the structure factors together with due regard 
for phase. 

If we examine the general solution in the light of the 
solution for a simple helix (Cochran, Crick & Vand, 
1952) we see that  in a loose way we may think of the 
first Bessel term as due to the major helix, the second 

to the minor helix, and the third to the tilt produced 
on the minor helix by the major helix. Some of the 
important terms correspond to the rather obvious 
approximations that  one would make if one did not 
have the full theory, and it is one of the advantages 
of the full theory that  it enables one to see how far 
such approximations are justified. 

In order to bring out the nature of the solution, 
it is best to discuss a simple case in outline. This is 
done in a separate paper (Crick, 1953). For the cal- 
culation of structure factors the full formula is re- 
quired. This is given in the next section. 

The calculation of structure factors 

For this one requires the full solution. For a major 
helix given by 

x = r o cos (O~ot+~0) , 
y = r o sin (eoot+~0), 
z = P(wot/2ze )+zo,  

and a minor helix given in its own rotating frame of 
reference by 

X '  = r 1 COS ( ( D l g + ~ 9 1 )  , 

y' = r 1 sin (eolt+~l) , 
Z t ~ 0 ,  

and with M atoms in the repeat distance c, one atom 
being at the point t = tl, we can show that  if we put 
99 m = 2reMtl/t o then the Fouriel' transform for this set 
of M atoms, normalized to make F000 unity, is 

C(R, ~, Z/c) 

= ~, ~, .~, Z ,  Jp(2gRro)Jq(2gR-rl)J~(27~(l/c)r~ sin a) 
p q s d 

× J~(2ztRA)exp [ip(yJ-q%+~r/2)+iq(-y~+q~l+r~/2 ) 

+ is(-q~l + re) + id(v/+q~l + r~/2)- im'  q~M+ 2JrilZo/C] , (13) 

subject to the condition that  

N o p + ( N 1 - N o ) q + N l s + ( N o + N 1 ) d  = l + M m ' .  (14) 

Here, as before, N 0 is the number of turns of the right- 
handed majo r helix in the repeat distance c, and N 1 
is the number of turns of the left-handed minor helix 
in its own frame of reference in the same distance. 
Thus -o)1/O)o = N1/N o. The parameters A and rl, 
are defined on page 687, and the pitch angle ~ on 
page 686. 

The transform of the corresponding continuous helix 

is obtained by taking m' = ~ = 0. 
It  may happen that  we have available the atomic 

co-ordinates of the basic straight left-handed helix 
from which the coiled-coil is formed. If the coiled-coil 
deformation is small, we can use these co-ordinates to 
obtain the values of the parameters we require with 
sufficient accuracy for most purposes. 

Let us call the co-ordinates of the particular atom 
under consideration (rs, ~s, Zs), taking zs as small as 
possible. We shall imagine the frame of reference to 
which these co-ordinates refer to be moved in space 



F. H. C. CRICK 689 

until it coincides with the position of our (x', y', z') 
frame at t = 0, i.e. with its origin at (r0, ~00, z0) in 
our basic frame and with its x axis perpendicular to 
our basic z axis and pointing directly away from it. 
I t  can be shown that  we should put 

r I : r s 

~OM = 2~M(zdc) cos a ,  

~ = ~+{(N~-~C0)/M}~. 

I t  should be remembered that  (rs, ~ ,  z~) should refer 
to a left-handed helix in a right-handed frame. 

I should like to thank Mr G. Kreisel for a number of 
interesting discussions and in particular for suggesting 
the use of Parseval's theorem at a crucial point. 
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It is shown that when a-helices of the Same sense pack together they will probably do so about 20 ° 
away from parallel. For very long chains this may lead to a coiled-coil. The two simplest models 
-- the two-strand rope and the three-strand rope--are described, and used to illustrate the ,diffrac- 
tion theory already developed. It is shown that they would give a diffuse a-pattern. Possible 
examples of these models are briefly discussed. 

• I n t r o d u c t i o n  

I t  is now firmly established that  the structure of the 
synthetic polypeptide polymethylglutamate is based 
on the a-helix of Pauling, Corey & Branson (1951). 
The general similarity of the X-ray diffraction pattern 
of all synthetic polypeptides in the a form so far exam- 
ined makes it very probable that  they are all based 
on this helix. 

Pauling & Corey (1951) suggested that  the a-helix 
could also explain the 'a-keratin'  diffraction pattern, 
which the pioneer work of Astbury and his school has 
shown to be given in various degrees of perfection by 
porcupine quill, hair, horn, muscle, epidermin, fibrin- 
ogen and related proteins. (The k -m-e- f  group). 

The main characteristics of this diffraction pattern 
are meridional arcs at spacings of about 5.15 and 1.5 A, 
and a group of reflexions on and near the equator at 
spacings around 10 A (McArthur, 1943; Perutz, 1951). 
The two main difficulties in fitting the a-helix to this 
structure are: 

(1) The 5.15 J~ reflexion on or very close to the 
meridian of the reciprocal lattice. A straight perfect 
a-helix, parallel to the fibre axis, gives a strong layer- 
line at a spacing of 5.4 /~, but the intensity on the 
actual axis of the reciprocal lattice should be zero. 
This argument is less precise if the arrangement of the 
side-chains is not strictly helical. 

(2) The density. If the centre of the broad equatorial 
reflexion at 9.8 A is taken as the (10.0) reflexion of a 
simple hexagonal lattice the calculated density for 
a-keratin is too low. (It is not clear that  all members 
of Astbury's k -m-e- f  group have a high density.) 

To explain the 5.15 reflexion on the meridian Crick 
(1952) suggested that  the s-helix might be deformed 
into a coiled-coil. I t  was shown that  the energy in- 
volved in this deformation was likely to be small. 
The reason suggested for the deformation was that  the 
non-integer nature of the a-helix made it more likely 
that  two helices having the same sense of twist would 
pack together at an angle rather than exactly parallel, 
and that  this would lead to a coiled-coil. 

Simultaneously Pauling & Corey (1953) put forward 
a detailed model for a-keratin based on coiled-coils. 
They suggested that  the origin of the deformation 
was a repeating sequence of animo acids, a repeat every 
seventh residue being required for two-thirds of the 
a-helices in the structure, and a repeat every fourth 
residue for two-ninths of them. 

This model can explain the simultaneous existence 
of both the 5.15 and the 1-5 /~ reflexions on the me- 
ridian. I t  also broadly explains the equatorial re- 
flexions, and probably the near equatorial reflexions 
of African porcupine quill. The density calculated for 
this model is nearer the observed value, but it is still 
on the low side. 

A C 6  4 4  


